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Welcome all of you to this fluid mechanics course. Today, we are going to plan about

conversion of mass. As you could remember it, then, in the last class we discussed about

Reynolds transport theorem. So, the same Reynolds transport theorem will be used to derive

mass conservation equation which is an important equation for any fluid flow problems.

(Refer Slide Time: 00:31)

Now, again, I can repeat that you can have this reference books. Cengel and Cimbala, Fluid

Mechanics, Fundamentals and Applications. Then, F.M. White, Fluid Mechanics, mostly the

derivations and partly we have been following this book. And this Fluid Mechanics by Prof.

Bidya Sagar Pani.

(Refer Slide Time: 01:33)
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Let us come back to what we learned in the last class. If you remember it, I discussed very

thoroughly what is the difference between systems and the control volume. Mostly in fluid

mechanics we follow the control volume aspect. That is the reason we need a relationship

between the system and the control volume. The Reynolds transport theorems establish the

relationship of conversions of mass from system to control volume.

So, that is the strength of the Reynolds transport theorems and, as already I discussed, you can

have three type of control volumes, fixed control volume, that means with reference to the

space it remains at the same location. As the time goes, it does not move it. That is what fixed

control volume is. It has definite control surfaces. The other one is moving control volume,

like the ship movement in a sea or the river. The ship and the adjacent fluid can be considered

as moving control volume.

And we solved many of the problems with moving control volume, considering this control

volume is moving with a particular velocity. Not only that, the shape of the control volume

can change. That was the deformable control volume. The shape of the control volume can

change with respect to time, then we call it deformable control volume. So, there are three

types of control volume, fixed control volume, moving control volume, and deformable control

volume.

So, in deformable control volumes, the shape of the control volume changes with time. In case

of moving control volume, the control volume moves with a particular velocity. That is what
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is moving control volume. And fixed control volume, as you can see it remains stationary at

that space regions. Today, we will talk about how we can derive the conservation of mass.

As I said earlier, when you have the control volume, through the control surface there is, mass

influx coming into the control volume, going out from the control volume. Similar way,

momentum flux comes into the control volume, also goes through the other surface as

momentum flux going out from that. Similar way, we can think this energy flux comes into

the control volume and goes out of this thing.

So, that way the conservation of mass, linear momentum, and energy equations, that is what

we will discuss in more detail. Today, I will focus on mass conservations only and that is the

point we will discuss.

(Refer Slide Time: 04:23)

So, as I have given very briefly Reynolds transport theorems and moving and deformable

control volume, conservation of mass we will derive for simple case to complex problems, how

we can write conservation of mass. Then, we will talk about some examples, real life examples

we will take and how the appropriate choosing of control volume and the control surface can

solve many of our problems.

That is what I will demonstrate, and the chosen examples we will tell to you, and end of the

day, I will summarise whatever the lecture component today I will deliver.

(Refer Slide Time: 05:09)
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Now, let us go to very interesting applications. As you know it Indian Space Research

Organisation launched the satellite which is calledMOMprogrammes, that meansMars Orbiter

Mission programme. But if you look at this, it is the fluid flow problem. If we look at the

trajectory which is started from the earth, and if you look at the trajectory part here, how this

trajectory goes on changing, which was launched on December 1, 2013, okay?

It is to reach the Mars orbit September 24, 2014. If you look that all satellites moving in the

atmosphere, the space, so accurately, considering your drag force and all the things, so

accurately the trajectory was designed to reach Mars orbit after almost more than one and half

years. So, the fluid mechanics knowledge what we have today we can design the trajectory

from earth to the Mars orbit. What I am trying to say is that fluid mechanics today is expanded

in a very, very high applications way.

So, what we are to study in this course is introductory levels. And, if you have interest, then

really we can solve these problems which we have done for Mars orbiter missions, launching

the satellites from earth to reach up to Mars orbiter locations. And you look at the payload or

the sensors, whatever was there in the Mars orbiter missions, starting for methane sensors, the

colour cameras, infrared sensors, or alpha photometers, and quadrupole mass spectrometer.

I am not going to discuss each sensor what it does, okay? If you are interested, you can get a

lot of literatures available in the internet but what I am trying to say is that India has capability

or Indian scientists have the capability to design a satellite tracking systems with the sensors,

starting with launching from the earth’s surface and it can be reach up to the Mars orbiter.
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Not only that, these sensor, whatever design it is, that also can get the data about Mars and that

is what is the target, that is what succeed. So, all these knowledge of fluid mechanics, the

advanced mathematics, all this help us to reach this mission’s programmes, what is done by

Indian Space Research Organization. With this note, let us talk about the fluid mechanics part.

(Refer Slide Time: 08:00)

Coming back to the Reynolds transport theorems, as I derived in the last class, one is the system

level equations and the other is the control volume level equations.

DBsys

D
 /   d

∀CV

∀  
ACS

  ⃗   ̂ 

B : extensive property of fluid (m, m⃗, E)

b : corresponding intensive property (1, ⃗, e)

b =




This is intensive property. Extensive properties are mass, momentum, and energy.

Intensive properties are unit value for the mass, for the momentum, the velocity vector for

energy is also e, the specific energy, energy for unit mass. So, if you look at this equation, let

us look it. This is the system level equations. This is what is at the control volume level. So,

one talks about how this particular mass or momentum flux is crossing through the control

surface. The net outflow is going through this control surface.
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That is what it is and this is what it is talking about. The change of the extensive properties

within the control volume with respect to time, one is with respect to control surface, one other

is with respect to storage within the control panel, how that extended property is changing with

time, that is related, the system and the control volume level. Now, let us have two

simplifications or assumptions which is quite valid for the fluid flow problems for most of the

times. That is steady and compressible flow.

DBsys
D

 /   d
∀CV

∀  
ACS

  ⃗   ̂ 

0

That means the density vary but it is steady. So, once it is steady, if you look at this term, it

becomes 0. Only what remains is the surface integration part which is quite easy now. If you

take a steady problem or if you can visualize the problems, it can be solved as a steady problem.

Then you need to go for complicated volume integrals and partial derivative or total derivative

of these things.

You can focus on only the control surface and over this control surface we can have surface

integrals and we can equate this equation. But when steady and incomprehensible, that means

this density becomes a constant quantity. So, density can come out from this surface integral.

That means only the b and velocity, the scalar products, the velocity and unit vectors, that part

will do the scalar part and surface integrals.

Now, if you look if I have the velocity vectors, okay? Let us consider I have a control surface

like this. If the n vector is like this, the perpendicular vector to the control surface is like that,

if I consider one simple case, the velocity is either parallel or opposite, if the same direction or

opposite direction, then my dot product is very easy, either v positive or v negative values.

What it indicates is that if you consider the control surface in such a way that your normal

vectors and your velocity vectors either will have the same direction or opposite direction of

that. So, if that is the condition, your scalar products will give it v positive or v negative

depending upon cos, 0̊ or 180̊ degrees. So, it is very easy to choose appropriate control

surface and find out what could be appropriate normal vector to that control surface.
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If I know that, that means that should be aligned with my velocity vectors. So, once I know

these velocity vectors I can have a approach, make my control surface in such a way it should

be perpendicular to that or the unit vectors or perpendicular vectors that should equally have

the same line or the opposite direction. The tricks what we follow is to simplify the problems

instead of doing the scalar product.

We can do it, it is not a difficult task, but we can simplify that by taking appropriate control

surface. That is to be remembered. Appropriate control surface taken such a way that this

scalar product can be simplified. So, once it is simplified, only we need to do surface integrals

of the velocity and the dA and the b value. Now the problem is quite simple for steady

incomprehensible flow.

density (ρ) = constant

Mostly my lectures will talk about this part only.

(Refer Slide Time: 13:13)

Now coming to a very interesting (()) (13:15) if I consider moving control volume like a ship

which is moving with a velocity V. So, then, the concept will be the same. Only here we will

talk about the relative velocity component. That means there will be fluid velocity V and

control volume is moving with a velocity, let it be Vs. So, we need to know it, what will be the

relative velocity Vr crossing through this control surface.

Fluid velocity = V

control volume is moving uniformly at velocity = Vs

Relative velocity = Vr

Fluid crossing the control surface
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    

For example, if the V is 5 meter per second and Vs is moving in the same direction with 3 meter

per second, the relative velocity will be 2 meter per second. So, that way find out what will be

the relative velocities coming into a moving control volume. That is what generally you do in

any physics problem. The same way where the control volume is moving with velocity V.

That means the control volume is moving with a velocity V s and the fluid velocity is V. So,

we have the relative velocity which is     . You can represent it as velocity vector

form. Then, this can come as vector form which will be complicated or you make it only one

directional velocity. So, that way you can make    or we can use a vector form. So, if that

is the condition, if it is moving at this, the Reynolds transport theorem for uniform moving

control volume will be the same. Here, we are using this Vr, the relative velocity.

So, this will be the vector form, the subtraction of V and Vs. We are using this relative velocity

component and dA, that is what is coming from this part. Please take care of these things that

when you consider the control volume moving with a constant velocity we use the relative

velocity things. And the relative velocity, if it is one dimensional velocity field, it is very easy,

but if not, you do this vector subtraction and that vector subtraction can be used to find out the

scalar product of this and that is what is represented here.

Your Reynolds transport theorem has just modified it considering instead of the V, the fluid

velocity, we use the relative velocity here, where V stands for velocity of the control volume.

Now, let us consider another case. Like the control volume moving with a constant shape with

a variable velocity, okay? So, that means what we are talking about is that the control volume

is moving, it is not a constant velocity it is moving with.

At each point when it is moving it has the velocity which is the function of position vector and

the time, okay, this position vectors with time, if the velocity of the flow is coming into this

system is positions vector t and V is moving with a velocity t, varies with time. That means,

you are not a fixed velocity, varying the velocity. Like you are accelerating control volume.

If the control volume moves as a fixed shape without deforming. Reynolds transport theorem

for this case of a uniformly moving control volume is
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






∀  ⃗  


∀



Initially it may have less velocity, as you go the velocity is changing, okay, and Vs is changing,

or you are deaccelerating, Vs is changing, and velocity vector position you know it what will

that be. In similar way, you can get the relative velocity. Again, vector subtraction of these

two velocity fields you can get the Vr value. Substitute the V in Reynolds transport theorem,

again you will get the equations for the control volume moving at constant shape with a variable

velocity.

  ,   (t)

(Refer Slide Time: 17:32)
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But in case you have a deformable control volume and also moving control volume, all the

things you have are complicated now. That means you have V which varies with position as

well as time, okay? So, like, for example, here it is given system control volume t equal to

time,   ∆ time. So, your Vs and V, fluid vectors have a function of position and the time.

Similarly, because it is deformable control volume we consider your V also varies with position

and time. So, it is r and t dependent, so position and time dependent.

  ,   (r, t)

And that vectors difference, if you see this graphically, the resultant velocity Vs and V and Vr

is relative velocity. Similar way, for this surface, you know the Vs, you know the V, you know

the Vr. So, this is what is represented for you, how the moving and deformable control volumes

as it is moving, how the velocity fields changes, how the velocity with respect to the control

volume changes from each point to point. Each point to point you can have the difference

because it is depending on position vectors and also the time.

So, if you look at the similar equations only, the Vr, we are deriving this relative velocity

vectors which is different for different cases like moving control volume, moving control

volume with deformable which will be coming like this. So, again, I am going to repeat it,

please do not be afraid of the surface integrals and the volume integral things because most in

of the engineering problems we simplify these two integrality in such a way that we need not

do the integration.








∀  ⃗  


∀


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We try to have just area multiplication or constant velocity (()) (19:41) concept we use it. But

for any complex problems where the geometry of the control volume can have complex natures,

at that time we need to surface integral and volume integrals. But again I am going to repeat,

do not be afraid. We have a lot of mathematical softwares which does the surface and volume

integrals for us.

So, how to do the integrations for the surface level or in a volume control level, it is not a

difficult task at the present area, but I will simplify the problems which is coming for your

competitive exams.

(Refer Slide Time: 20:24)

Now, let us come to the, as I said it, we need to have three equations. One is conservation of

mass, conservation of linear momentum or the angular momentum. And third is, as you know

it, conservation of energy. So, most of the times you remember whenever you solve the fluid

mechanics problems we have three helping hands, it is not two, it is three helping hands. One

is conservation of mass, the other is momentum, and another is energy.

But the problem is that many of the times we solve only the pressure and the velocity, okay?

Many of the problems we are going to solve in this introductory fluid mechanics. Only need

to solve for the pressure and the velocity. So, you may not need three equations. You just need

two equations. In that two equations first and foremost requirement is always mass

conservation will be there.
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Whatever the problems you solve it, the first thing is that mass conservation will be there. Only

the option left with us is whether you have to consider conservation of momentum or the

energy, thus the difference, because we have only two solutions we are looking at, we have

three equations. That is why it is quite interesting in fluid mechanics, sometimes we use the

linear momentum equation, angular momentum equation, or the energy equations depending

upon the problems. So, how easy to solve the problems.

That is what you try to get. So, let us come in to the mass conservation equation which is very

easy equation to be solve and the conservation of mass. At the Reynolds transport levels if I

put

B = m

b = 1

and no doubt that



or
D


for any systems, that is 0, unless otherwise you have nuclear energy

or additional energies coming to the system, what in general you do not consider in this case.

No chemical process, only we are talking about the process where the additional mass is not

coming to that or mass is decaying from the system. If you look at the things, substituting b

equal to 1. Now simplify the problems.

D


= 0 =




 1.  d∀CV

∀  +   ACS
1. ( ⃗  ) dA

If you substitute b equal to 1, if you look that the density will be a function which we can put,

and you have this part. So, the volume integrals and surface integrals here.



∀

∀   ⃗ .


 0

And this is a very interesting equation. Now, if you look that, this is talking about the net

outflow of the mass through this control surface. That means, if I consider a control surface,

there will the regions, which are the inflow reflow and there will regions which will be the

outflow. And there will be regions where there is no exchange of mass, no flow region. So,

that means what you are looking at? You are looking at inflow mass and outflow mass.





∀  
∀




 0

The net change of the mass in this control volume should be equal to the change of mass storage

within the control volume. That is what the concept is you are look. If I put as a unit level, the

density  ⁄ . Multiple with the volume which is the . So, what it indicates for me is
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that Kg per unit time. So, this is how much of Kg of mass storage is happening per unit time.

That is what we are getting from this within the control volume.

 ⃗ .


 0

This is the net outflow of the mass. If you look at the V into d A into the d A into the rho. V

is the velocity, if you just look at the dimensions, just I am putting the dimension part which is

easy to remember or whenever you write the equation, by mistake something, always check

the dimension of the problem, okay? The dimension of any equation component should be the

same. For example, the density, again I can say that it is  ⁄ .

Velocity is  ⁄ into area is . So, finally it is coming  ⁄ . So, these two equation

component is  ⁄ . This is mass flux. The net outflow of the mass within this control volume

will be the net change in the mass within the control volume. How much of crossing through

it, crossing things and the net flux. So, that is what is the mass thing.

But many of the times we simplify the problems. We make it one dimensional inlet and outlet

problem. What is that? Let us have the problem of the pipe network connecting to one

reservoir, okay? Like you have a big reservoir here. There are the pipes that are connected. A

series of pipes are connected. Some are inflow, some are outflow, okay. If this is the reservoir,

let this be from the same liquid.

So, you have 1, A1 and V1. Here could be 2, A2, V2; 3, A3, V3. Like this we can have some

are inflow, some are outflow if you consider one dimensional flow. Second dimensions we are

not talking or third dimensions we are not talking. We are assuming that flow is one direction.

I know the average velocity of this things. If it is that, then very easy problem now.

I can, instead of doing this surface integrals, okay, if I take this is my control volume, so I can

just get the mass flux per unit time, it will be the density multiplications of area into the average

velocity, 1 A1 V1, out, in. So, there will be in and there will be the out. So, here, we remember

out is a positive, that is because of scalar product, okay. That will be the positive sign here and

you will have a negative sign.

So, if you look very tactically, if the flow is one dimensional nature if we present it, in terms

of average velocity V1, V2, and V3, 1, 2, 3, and A1, A2, A3, as flow is only one direction,
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instead of doing the surface integrals we make it a simple summation of each inflow and

outflow. That net out mass influx is equal to change in the mass storage within the control

volume.

But it is steady, as you know it, this becomes 0. So, you have very simple problems. Only the

summations is what you will do for inflow and outflow. So, that means what happens is that,

like, for example, your bank account, okay. If the money what you put in and what you spend

they are equal, your bank account balance will remain the same. That is what happens in fluid

flow problems.

If the problem is steady, there is no change in the storage within the control volume. What it

indicates is that net outflux of this control volume becomes zero. What it says is that the sum

of influx of mass is equal to some of mass outflux going through the control surface. That is

the examples I have given. Some are influx, some are outflux. You just find out at the

mathematical level this or as a simple summation for one-dimensional flow.

(Refer Slide Time: 29:15)

That is what again I am going to repeat it to tell you that further steady flow, mass flow entering

the leveling control must be balanced. It is too packed, there is nothing else. Any system, if it

is steady, it does not change with time, with respect to time. That means, what it indicates is

that there is no change in the storage, mass flow, there is no change in the mass storage within

this control volume. So, inflow should be equal to the outflow.
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That is what you can do the summations of the number of inflow, the number of the outflow.

We should know density, we should know the area of the flow, we should know the average

velocity. So, similar way, we can have in and out, we can do the summation of that. If you

have same steady flow mass conservation mass level or this one, the same concept, only here

we are putting it.

 





And here I am talking about one-dimensional flow. If control surface and velocity vectors they

are not aligning, they are not parallel, then you need to do scalar products, then do surface

integrals to find out what could be the mass flow going through that control surface. These are

surface integration, the scalar product. Then, you do the integrations if the density is also a

function of the space and the time, then you will have more difficulty.

the steady flow mass conservation equation can be written as


.
 




.




If the inlet and outlet are not one-dimensional, then the expression is


.
   ⃗ .



Otherwise, if the density is constant you can take it out, only this velocity scalar product and

the d A we can do a surface integral to compute what will be the mass flux. That means if you

consider it is very complex control surface as you like it to make it complex things. Then, there

will be no problems, you can solve the fluid problems. You need to have a leverage or you

need to use high-end mathematic tools.

In today’s world what is available like MATLAB, Mathematica and all to integrate it.

Considering that for each reach, the velocity varies and each point also your end vectors vary.

Do the scalar product, integrate with d A and get it, what will be there. That is possible, but as

I say, various ways, because tools are available, only you have to use that tools. For example,

for the academic point of view we will not go to doing surface integrals in exams or any

competitive.

(Refer Slide Time: 32:01)
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